

Volume 5, No. 1 Spring, 2014

Table of Contents
Security/Performance Trades-off in Hybrid Real Time Scheduling Algorithm

(Joon Son and Jim Alves-Foss) ... 2

Strategies for Managing Perceived Crowding in Tourist Destinations:A Case of a Buddhist Temple

Site in Korea (JoungKoo Park, Joong-Won Lee, Chanh Huh, and Alan Wright) 26

What Drives CEO Pay in the U.S.?:An Empirical Study of Companies in the Consumer Staples

Sector (Il-Woon Kim and Cory M Tucker)………... 46

Editor

Kyung Joo Lee (University of Maryland-Eastern Shore, USA)

Review Board

Heungjoo Cha (Finance, University of Redlands, Redlands, USA)

Albert Chi (Computer Science, University of Maryland - Eastern Shore, USA)

David Choi (Management, Loyola Marymount University, USA)

Cedric E. Daukims (Management, California State Polytechnic University - Pomona, USA)

Sung-Kyu Huh (Accounting, California State University - San Bernardino, USA)

Stephen Jakubowski (Accounting, Ferris State University, USA)

Jeein Jang (Accounting, ChungAng University, Korea)

John J. Jin (Accounting, California State University - San Bernardino, USA)

Il-Woon Kim (Accounting, University of Akron, USA)

JinSu Kim (Information System, ChungAng University, Korea)

Young-Hoon Ko (Computer Engineering, HyupSung University, Korea)

Byunghwan Lee (Accounting, California State Polytechnic University - Pomona, USA)

Habin Lee (Management Engineering, Brunel University, UK)

Myong Jae Lee (Hospitality Management, California State Polytechnic University - Pomona, USA)

Diane Li (Finance, University of Maryland-Eastern Shore, USA)

Qiang Li (Finance, Shanghai University of Finance and Economics, China)

Frank Lin (Information Systems, California State University - San Bernardino, USA)

Samantha Liu (Accounting, California State University - San Bernardino, USA)

Yongsun Paik (International Business, Loyola Marymount University, USA)

Kwangsun Song (Management, SoonChunHyang University, Korea)

Hua Sun (Real Estate, Iowa State University, USA)

Tae Won Yang (Finance, California State University - San Bernardino, USA)

Sehwan Yoo (Information Systems, University of Maryland-University College, USA)

MoonGil Yoon (Management Science, Korea Aerospace University, Korea)

Sung Wook Yoon (Accounting, California State University - Northridge, USA)

1. Topics: All areas of business, economics, and information systems

2. Manuscript Guidelines/Comments:

Pan-Pacific Journal of Business Research (PPJBR) is a double blind peer reviewed Journal

focusing on integrating all areas of business, economics, finance, and Information Systems.

PPJBR pursues high quality researches significantly contributing to the theories and practices of

all areas of business, economics, and Information Systems. PPJBR is an academic journal listed

on Cabell Directory. PPJBR consider for publication the following topics in all areas of business

and economics including Accounting, Economics, Entrepreneurship, Finance, Hospitality

Management, International Business, Marketing, Human Resource Management, Operation

Management, Information Systems, Strategy, and Supply Chain Management:

• Current and new theories.

• New regulations and policies.

• Application of business and economic theories.

• Case studies exploring current issues

• Pedagogical issues in business education

3. Submission:

Authors are required to submit their article or manuscript electronically at info@ppbri.org.

Before submission, the article or manuscript should not be published in any other journal. The

article or manuscript should be in MS Office Word format. It should be written in a single space

with a maximum number of 15 pages and 12 font size. Title, the name(s), affiliation(s), address

(es), phone number(s), and email(s) of authors should be on the cover page. Contact author

should be indicated. Only an abstract of the article or manuscript in 250 words, title, and 4 key

words should be shown on the second page.

PPJBR generally follows the American Psychological Association (APA) guidelines. Reference

should be presented in a separate sheet at the end of the article or manuscript. Tables, figures,

footnotes, and their numbering should appear on the appropriate page. The usage of footnotes

should be minimized. The decision of acceptance usually takes three months. After acceptance,

PPBRI has a copy right for the accepted article and manuscript.

The article or manuscript should be submitted to: Dr. Kyung Joo Lee, Editor, Kiah Hall Suite

2110, Princess Anne, MD 21853. Phone: 410-621-8738. Email: kjlee@umes.edu.

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

Security/Performance Tradeoffs in Hybrid Real-Time Scheduling Algorithms

Joon Son, California State University, San Bernardino∗

Jim Alves-Foss, University of Idaho

ABSTRACT
Typical real-time systems handle a hybrid task set consisting of periodic and aperiodic tasks.
This paper addresses the covert timing channel issues in scheduling a set of hybrid tasks for
Multi-Level Secure (MLS) real-time systems. After identifying timing vulnerabilities in several
existing hybrid scheduling algorithms, we propose security measures for eliminating covert tim-
ing channels. Usually, security measures applied to satisfy the security requirements adversely
affect system performance or timeliness requirements of real-time systems. Since the timeliness
requirements of many real-time systems cannot be compromised over security requirements, the
tradeoffs between the security and timeliness requirements in hybrid scheduling algorithms are
also discussed.

Keywords: Multi-Level Security (MLS), covert timing channel, security-performance trade-
off

JEL Classification: A1

∗Corresponding author: Information Decision Sciences, College of Business and Public
Administration, JB-551, 5500 University Parkway, San Bernardino, CA 92407-2397 Of-
fice: (909) 537-5778, Fax (909) 537 7176, email:json@csusb.edu.

Date Availability: Data are available from sources identified in the paper.

2

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

1 Introduction

Multi-Level Security (MLS) is concerned with controlling the flow of information in sys-
tems. The main goal of MLS policies is to ensure that information at a high security
classification cannot flow down to a lower security classification. A typical approach to
implement a Multi-Level Secure (MLS) system is to assign classification labels to all ob-
jects and clearance labels to all subjects. To determine whether a specific access mode
is allowed, the clearance of a subject is compared to the classification of the object to
determine if the subject is authorized for the specific access mode. This is the approach
taken in the well-known Bell-La Padula access control model [5]. For simplicity, through-
out this paper, we assume that a MLS system has two security levels, High-secrecy and
Low-secrecy.

It has been known that access control models are not sufficient to ensure that users
cannot obtain information for which they do not have the necessary clearance. This is the
due to an existence of covert channels through which information can be transmitted from
a High level entity (High) to a Low level entity (Low). In this paper, we are interested
in a specific type of covert channel, a timing channel. A covert timing channel exists if it
is possible for High to interfere with its use of system resources in such a way that this
manipulation affects the response time observed by Low.

Numerous papers [7, 19, 20, 22, 29, 35, 38] have presented mathematical frameworks
for analyzing the possible information leakage through a covert timing channel for various
systems. In our previous works [26, 27], we analyzed how a covert timing channel can be
created and exploited by a set of independent periodic tasks having different secrecy levels
and running under a well-known fixed-priority preemptive scheduling algorithm. In addi-
tion, we developed a a general trace-based framework to carry out a covert timing channel
analysis of a real-time system. [28]. Our focus was primarily on the security aspects of
a real-time system. Since the timeliness requirements (e.g., deadlines) or performance
overhead of real-time systems cannot be compromised over security requirements, in this
paper, we investigate how a security measure taken to eliminate a covert timing chan-
nel can cause performance overhead. In particular, we quantify a relationship between
performance overhead and covert channel capacity as the security measure is applied.

Many real-time systems require an integrated approach suitable for scheduling hard
deadline periodic tasks along with aperiodic tasks with no firm deadline. In this paper,
we carry out a covert timing channel analysis of real-time systems which employ fixed-
priority preemptive scheduling algorithms for scheduling a set of hybrid (periodic and
aperiodic) tasks. Typically, periodic tasks are time-driven and execute critical control
activities with hard timing constraints. Aperiodic tasks are usually event-driven and
may have soft, or non-real-time requirements depending upon the specific application. In
fixed-priority-based scheduling, control of the CPU is always given to the highest priority
task ready to run and the scheduling priority assigned a task is fixed. How a scheduling
priority is assigned to a task, however, is determined by the type of scheduling algorithms
used. Among a group of hybrid fixed-priority scheduling algorithms, we choose the three
most well-known algorithms for our work: Polling Server (PS), Deferrable Server (DS),
and Priority Exchange (PE) [4, 16, 18, 32]. The detailed description of these algorithms

3

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

are presented in Section 2.
The objectives of this paper are twofold. The first is to identify the possible existence

of covert timing channels in each scheduling algorithm and propose a security measure to
eliminate them. The second is to present a mathematical model of controlling the amount
of information leakage which causes performance overhead.

2 Real-time scheduling algorithms

In this section, we present a number of scheduling algorithms for handling a hybrid task
set consisting of hard periodic tasks and soft aperiodic tasks. The deadline of a hard
task must be met (if the deadline is missed, the system is in fault) while the deadline
of a soft task does not need to be always met. The simplest method of dealing with a
set of soft aperiodic tasks is to schedule them only when there are no periodic instances
ready to execute. This simple scheduling method is called Background Scheduling (BS).
Obviously, the major problem with BS is that the average response time of aperiodic tasks
can be too long when periodic task loads are high. We discuss three basic fixed preemptive
scheduling algorithms devised to improve the average response time of aperiodic tasks,
compared to BS. Before explaining the hybrid scheduling algorithms, we introduce some
of the mathematical notations and assumptions used throughout this paper.

2.1 Notations and assumptions

The notations used in this paper are:

• A periodic (or an aperiodic) task with label i is represented by TP
i (or TA

i). A task
i with scheduling priority πi is denoted by Ti,πi

. Note that πi ∈ {1, 2, . . . , n} (1
being the highest scheduling priority and n being the lowest). We denote a periodic
(or an aperiodic) task i with scheduling priority πi by TP

i,πi
(or TA

i,πi
).

• An instance of a task is called a job. For instance, a periodic task consists of a series
of jobs with regular arrival times.

• The response time ri of a task i is the time difference between the release time of a
job of the task i and the completion of the job. We denote the worst case response
time of a periodic task i by Ri.

• A periodic task i is characterized by the following four parameters: the phase Φi,
the relative deadline Di, the period Ti and the worst (maximum) computation time
Ci. The phase Φi is the release time of the first job of TP

i . The relative deadline
Di is the maximum allowable response time of TP

i . We denote a periodic task with

the four parameters by T
P(Φi,Di,Ti,Ci)
i .

The scheduling algorithms presented in this section are based upon the following as-
sumptions:

4

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

• The tasks running on a single processor are independent (no shared resources among
the tasks other than the processor).

• The Periodic tasks are scheduled by the Rate-Monotonic (RM) scheduling algo-
rithm [15, 16, 17]. The RM scheduling algorithm has the following characteristics:
tasks with shorter periods (higher request rates) will have higher scheduling priori-
ties, a scheduling priority assigned to a task is fixed and a currently executing task
is preempted by a newly arrived task with a higher priority (shorter period).

• Unless otherwise specified, all periodic tasks start simultaneously at time 0 (Φ = 0)
and their relative deadlines are equal to their periods (D = T). Thus, the notation
of a periodic task i can be simplified as Ti

P(Ti,Ci). For a periodic task i to be
schedulable, Ri ≤ Di.

• Arrival times of aperiodic tasks are unknown.

2.2 Polling Server

The Polling Server (PS) algorithm is based upon the following approach [18]. When
an aperiodic task arrives, it is placed in an aperiodic job queue, waiting for execution.
A periodic task, called the polling server, is created to serve aperiodic requests. Like
any periodic task, the polling server s is characterized by the polling period Ts and the
maximum computation time Cs, i.e. TP(Ts,Cs)

s . In the PS algorithm, the parameter Cap,
called the server capacity, is monitored to make sure that the polling server cannot execute
an aperiodic task for more than Cs units of time. At the beginning of each server period
Ts, Cap is set to Cs (we say that the server capacity Cap is replenished by Cs units of
time) and the aperiodic job queue is examined for emptiness:

• If the queue is found to be not empty, the polling server executes the aperiodic
job(s) until there is no job left to execute in the queue or it executes for Cs units
of time, whichever occurs sooner. When the server executes the aperiodic jobs in
the queue, it consumes its Cap at the rate of one per unit time. When the queue
becomes empty or the polling server has consumed all of its server capacity Cap
(i.e., Cap becomes zero - we say that the server capacity becomes exhausted), it is
immediately suspended and wait for the next polling period for execution.

• If the queue is found empty, the polling server suspends immediately. The polling
server will not be ready for execution and is not able to examine the queue again
until the next polling period. An aperiodic task which arrives after the aperiodic
job queue is examined and found empty must wait for the next polling period to be
serviced.

In general, the polling server is scheduled with the same algorithm used for the periodic
task, and, once active, it serves the aperiodic requests with the limit of its server capacity.
Figure 1 illustrates an example where the aperiodic task j is serviced by the polling
server s. Note that numbers above the arrows in Figure 1(a) indicate the computation

5

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

time associated with the aperiodic requests. The example shows that the set Γ
P S

of the
polling server s with Ts = 3 and Cs = 2 and the periodic task i is scheduled by the RM
algorithm. According to the RM scheduling rule, πs = 1 and πi = 2 since Ts < Ti. In the
example, at time 0 (t = 0), the server suspends itself since there is no aperiodic request
pending and the periodic task executes instead. The first aperiodic task, which arrives at
time 5, cannot execute immediately since the polling server suspends itself at time 3; it
must wait until the beginning of the next server period (t = 6). At time 6, the capacity
of the server is replenished to its full value (Cs = 2) and is used to serve the aperiodic
task; the periodic task activated at time 6 is preempted by the aperiodic task. At time 7,
the aperiodic task finishes its execution and the server suspends itself; the periodic task
which is preempted at time 6 is able to execute. We skip an explanation of the rest of the
timing behaviors of the tasks.

We introduce a new notation to denote a real-time system Γ
Alg

with the following
conditions:

• The real-time system Γ
Alg

consists of an aperiodic task j and a set of periodic

tasks (T
P(Ti1

,Ci1
)

i1,πi1

, T
P(Ti2

,Ci2
)

i2,πi2

,. . .), scheduled by a hybrid scheduling algorithm Alg ∈

{P S, DS, P E}. The system is denoted by:

Γ
Alg

= {(TA
j,πs

, TP(Ts,Cs)
s,πs

), T
P(Ti1

,Ci1
)

i1,πi1

, T
P(Ti2

,Ci2
)

i2,πi2

. . . }
RM

In the above notation, (TA
j,πs

, TP(Ts,Cs)
s,πs

) denotes that the aperiodic task j is handled
by the periodic server s and scheduling priority πj of the aperiodic task j follows
that of the server s, i.e. πj = πs.

• The periodic server s and periodic tasks are scheduled by the RM scheduling al-
gorithm (i.e., the periods, Ts, Ti1

, Ti2
, . . . are compared to determine a scheduling

priority of each task). Note that both RM and hybrid scheduling (P S, DS, and
P E) impact the timing behaviors of the aperiodic task j.

Using the above notation, the PS algorithm of Figure 1 can be formalized as (the
aperiodic task j has a higher scheduling priority than the periodic task i since Ts = 3,
Ti = 6, and Ts < Ti) :

Γ
P S

= {(TA
j,1, T

P(3,2)
s,1), T

P(6,1)
i,2 }

RM

In the following two sub-sections, we introduce the Deferrable and the Priority Ex-
change algorithms proposed to improve an average response time of aperiodic tasks with
respect to the PS algorithm.

2.3 Deferrable Server

Just as polling, the Deferrable Server (DS) algorithm creates a periodic task called a
deferrable server s to service aperiodic requests [4, 16, 18, 32]. A capacity Cap of a
deferrable server is also replenished periodically with period Ts. However, unlike polling,

6

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

0 4 6 10 14 16 20
time

242 8 12 2218

0 4 6 10 14 16 20
time

242 8 12 2218

0 4 6 10 14 16 20
time

242 8 12 2218

1 3 2

Task
activation

Task
termination

a) Aperiodic requests

b) Periodic task

c)Server capacity of polling server

2Cap

T
A

T
A

T
P(6,1)

T
P

Figure 1: Example: PS scheduling

when a deferable server finds no aperiodic job ready for execution, it preserves its server
capacity, rather than suspends itself. We use an example to explain the DS algorithm.
Let us assume that a system Γ

DS
of hybrid tasks has the following scheduling parameters:

Γ
DS

= {(TA
j,1, T

P(3,2)
s,1), T

P(6,1)
i,2 }

RM

A possible sequence of executions of the hybrid tasks in the system Γ
DS

is shown in
Figure 2. There are a few points worth noting in the timing diagram: at time 0 (t = 0),
the server is given 2 units of capacity (Cap = Cs = 2). The capacity Cap remains at 2
until time 5 since there is no aperiodic request. At time 5, the aperiodic task j arrives
and the deferrable server s executes the task j; the capacity of the server decreases as
it executes. At time 11, the aperiodic task arrives and is immediately executed by the
server; Cap is decreased by 1. At time 12, Cap of the server is replenished to its full
value (Cap = 2) and the server continues to execute the aperiodic task j. The execution
of the periodic task which arrives at t = 12 is delayed. At time 14, the server finishes
the execution and Cap is exhausted; the periodic task begins to execute. We skip an
explanation of the rest of the timing behaviors.

2.4 Priority Exchange

Just as PS and DS, the Priority Exchange (PE) algorithm creates a periodic server s
for servicing aperiodic tasks. At the beginning of each server period, the capacity Cap
is replenished to its full value (Cap = Cs). If aperiodic requests are pending and the
higher-priority server is ready, the aperiodic tasks are serviced using the available server
capacity.

However, unlike PS and DS, PE preserves its capacity Cs by exchanging it for the
execution time of a lower-priority periodic task when no aperiodic requests are pending
to use the capacity. When a priority exchange occurs between a periodic task and a
PE server, the periodic task executes at the priority level of the server while the server

7

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

0 4 6 10 14 16 20
time

242 8 12 2218

0 4 6 10 14 16 20
time

242 8 12 2218

0 4 6 10 14 16 20
time

242 8 12 2218

1 3 2

Task
activation

Task
termination

a) Aperiodic requests

b) Periodic task

2
Cap

c)Server capacity of deferrable server

T
A

T
A

T
P(6,1)

T
P

Figure 2: Example: DS algorithm

accumulates a capacity at the priority level of the periodic task. Thus, the periodic task
advances its execution, and the server capacity is not lost but preserved at lower priority.
If no aperiodic task arrives to use the capacity, priority exchange continues with other
lower-priority tasks until either the capacity exhausted or no task is active. When no task
is active, server capacity preserved at lower priority is gradually discarded. An example
of the PE algorithm shown in Figure 3 assumes:

Γ
P E

= {(TA
j,1, T

P(4,1)
s,1), T

P(8,4)
i,2 }

RM

At time 0, the capacity Cap of the server s is replenished to its full capacity (Cap =
Cs = 1), but no aperiodic requests are pending; Cap is exchanged with the execution
time of the periodic task i. As a result, the periodic task i advances its execution and
the server accumulates one unit of time at the priority level of the task i. Note that the
line shown in Figure 3 (b) overlapped with the schedule of the periodic task indicates the
capacity Cap accumulated at the priority level of the corresponding periodic task. Also
note that the line shown in Figure 3(c) overlapped with the sever capacity represents the
total units of time available for executing aperiodic requests. At time 2, the periodic task
finishes its execution. Cap, which is preserved at the priority level of the periodic task,
diminishes since no task is active. At time 4, Cap is replenished (Cap = 1) and used to
execute the aperiodic task j for 1 unit of time. At time 8, the newly replenished Cap is
used to execute the remaining portion of the previous aperiodic task j . At time 16, Cs is
exchanged (preserved at the priority level of the task i) and the periodic task advances to
execute. At time 20, the newly replenished Cap (1 unit of time) is fully consumed to serve
the second aperiodic request which requires 2 units of execution time. At time 21, the
capacity accumulated at the priority level of the periodic task i is consumed to execute
the remaining portion (one unit of time) of the second aperiodic request; this execution
of the aperiodic request is what makes PE different from DS and PS. If DS or PS is used
instead, the execution occurred at t = 21 is delayed until the beginning (t = 24) of the
next server period.

8

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

0 4 6 10 14 16 20
time

242 8 12 2218

0 4 6 10 14 16 20
time

242 8 12 2218

0 4 6 10 14 16 20
time

242 8 12 2218

Task
activation

Task
termination

2 2

a) Aperiodic requests

Cap 1

1

b) Periodic task

c) Server capacity of PE server

T
A

T
A

T
P(8,4)

T
P

Figure 3: Example: PE algorithm

Since the PE algorithm has to track priority exchanges with lower priority tasks while
DS algorithm only needs to monitor its capacity at the original priority level, PE is harder
to implement. However, a PE server has a better CPU utilization and response time for
aperiodic requests than DS [6].

3 Covert timing channel analysis

3.1 Our model & assumptions

In MLS real-time systems, it is assumed that both the security level and the scheduling
priority of each task are defined. The label i of task Ti,πi

is used to indicate the security
level, i.e. i ∈ {H, L} (H for High-secrecy and L for Low-secrecy). For example, TH,2 is
a High-secrecy task with the scheduling priority equal to 2 (π

H
= 2).

To simplify our analysis, we only consider the cases where there is no third party
task T

N
running with a scheduling priority higher than any of a High-secrecy or a Low-

secrecy task; such a third party task may affect the timing behaviors of High-secrecy or
Low-secrecy tasks, thereby introducing noise into covert communication channels. With
two parameters (security level and scheduling priority) associated with each task and
the noiseless channel assumption, there are four different cases to consider. Let Alg ∈ {
PS, DS, PE } denote the scheduling algorithm being used. The term such as higher- or
lower-priority indicates a scheduling priority level.

• Case I - a real-time system Γ
Alg

consisting of the Low-secrecy higher-priority ape-
riodic task, the High-secrecy lower-priority periodic task and the third party tasks
is scheduled by the algorithm Alg:

Γ
Alg

= {(TA
L,1, T

P(T
S

,C
S

)

S,1), T
P(T

H
,C

H
)

H,2 , TN,3, . . . }
RM

9

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

Case I Case II Case III Case IV
PS Secure Insecure Insecure Secure
DS Secure Insecure Insecure Secure
PE Insecure Insecure Insecure Secure

Table 1: Existence of covert flows

• Case II - a real-time system Γ
Alg

consisting of the High-secrecy higher-priority
aperiodic task, the Low-secrecy lower-priority periodic task and the third party
tasks is scheduled by the algorithm Alg:

Γ
Alg

= {(TA
H,1, T

P(T
S

,C
S

)

S,1), T
P(T

L
,C

L
)

L,2 , TN,3, . . . }
RM

• Case III - a real-time system Γ
Alg

consisting of the Low-secrecy lower-priority ape-
riodic task, the High-secrecy higher-priority periodic task and the third party tasks
is scheduled by the algorithm Alg:

Γ
Alg

{(TA
L,2, T

P(T
S

,C
S

)
S,2), T

P(T
H

,C
H

)
H,1 , TN,3, . . . }

RM

• Case IV - a real-time system Γ
Alg

consisting of the High-secrecy lower-priority ape-
riodic task, the Low-secrecy higher-priority periodic task and the third party tasks
is scheduled by the algorithm Alg:

Γ
Alg

= {(TA
H,2, T

P(T
S

,C
S

)

S,2), T
P(T

L
,C

L
)

L,1 , TN,3, . . . }
RM

3.2 Identification of covert timing channels

In fixed-preemptive real-time scheduling, information leaks through covert timing channels
if High-secrecy tasks can preempt Low-secrecy tasks, thereby affecting response times of
Low-secrecy tasks. In Case II and III (see Table 1), covert timing channels can be easily
constructed since the High-secrecy task is able to preempt the Low-secrecy task.

A common approach to eliminate a covert timing channel is to assign a higher schedul-
ing priority to a Low-secrecy task. This approach is called Lower-Secrecy First (LSF).
Although lower-Secrecy First (LSF) [31] is one of the commonly adopted methods to elim-
inate covert timing channels, it has well known performance disadvantages: High-secrecy
tasks experience a delay in response time under the LSF rule.

As expected, there is no covert flow in Case I-DS, I-P S, and IV (Table 1) since the
real-time tasks are assigned scheduling priorities based upon the LSF rule (see Table 1).
However, there is an interesting exception to the LSF rule in Case I-P E (where the real-
time tasks run under P E scheduling and are assigned scheduling priorities based upon
the LSF rule). In the next section, we demonstrate how High can leak information to
Low in Case I-P E.

10

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

3.3 Exception to Lower-Secrecy First (LSF)

Even though the LSF rule is applied, the High-secrecy task can still create a covert
channel if P E scheduling is deployed. More specifically, under P E scheduling, the High-
secrecy lower-priority periodic task can affect the response time of the Low-secrecy higher-
priority aperiodic task, thereby allowing covert timing flow from High to Low. The task
execution diagram in Figure 3 is used as an example to illustrate how covert timing
channels can be established in Case I-P E. In the example, the Low-secrecy higher-
priority aperiodic task handled by the PE server s with Ts = 4 and Cs = 1 and the
High-secrecy lower-priority periodic task with T

H
= 8 and C

H
= 4 are scheduled under

the RM algorithm:

Γ
P E

= {(TA
L,1, T

P(4,1)
s,1), T

P(8,4)
H,2 }

RM

High, as an information sender, and Low, as an information receiver, have the follow-
ing strategy: the server capacity preserved in the High-secrecy lower scheduling periodic
task is used as a shared communication medium between High and Low to covertly trans-
mit information. With the long execution of the High-secrecy task, the server capacity
can be preserved long enough to be used for the Low-secrecy aperiodic request, which
causes a short response time of the Low-secrecy task (Low interprets this as receiving 0
from High). With the short execution, the preserved server capacity quickly diminishes
and the Low-secrecy task experiences a delay in response time (Low translates this as
receiving 1). In the example, at t = 0, 16, . . . (t = 2 · k · T

H
, k = 0, 1, . . .), High transmits

either 1 or 0. To transmit ‘1’, the High-secrecy task with an execution time less than C
H

is submitted. To send ‘0’, the High-secrecy task with an execution time equal to C
H

is
dispatched. To receive ‘1’ or ‘0’, Low submits a Low-secrecy higher scheduling aperiodic
request at t = 4, 20, . . . (i.e., t = 2 · k · T

H
+ Ts, k = 0, 1, . . .); the size1 of the aperiodic

request should be a little bit greater than the value of Cs. In this example, the size of the
aperiodic task is chosen to be Cs + 1, which is 2. If the response time of the Low-secrecy
aperiodic task is equal to 2, it is interpreted as receiving ‘0’ and if the response time is
longer than 2, it is interpreted as ‘1’. In Figure 3, at t = 0, High transmits ‘1’ and, at
t = 9, Low receives ‘1’ (the response time of the Low-secrecy task is greater than 2). At
t = 16, High transmits ‘0’ and, at t = 22, Low receives ‘0’ (the response time is 2).

The above strategy clearly shows that covert timing channels can be constructed under
P E scheduling even though the LSF rule is applied.

3.4 Weakest covert timing channel

Information security is commonly characterized as a weakest link problem. The infor-
mation which organizations are trying to protect is only as secure as the weakest entry
point to that information. This makes knowledge of the weakest link critical. In this
section, the weakest (most insecure) timing channel is determined from seven different
covert channels (Case II, III, and I-P E in Table 1) identified in the previous sections.

1The size means the time it requires to complete an aperiodic task without any interruption.

11

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

Our analysis in the subsequent sections is focused on the weakest covert timing channel
case.

Since P E is a more complex scheduling algorithm than both DS and P S, a sophis-
ticated transmission mechanism is required to construct a covert timing channel as illus-
trated in the section 3.3. If P S scheduling is employed, an execution of an aperiodic task
can be delayed (when the aperiodic task arrives after the polling server suspends itself)
and this delay makes it hard for attackers to build an efficient covert timing channel.

Since DS is a capacity preserving algorithm, aperiodic requests can be serviced by a
server at any point in time as long as a server capacity is available to consume. Thus,
in Case II-DS and III-DS, aperiodic requests can be efficiently used to create a covert
timing channel. From an attacker’s perspective, Case II-DS is more or equally preferable
to Case III-DS for the following reason. In Case II-DS, the High-secrecy aperiodic task
is invoked only when it is necessary to covertly transmit information. In addition, the
delay time of the Low-secrecy task can be always measured since it runs periodically and
continuously to meet real-time requirements. However, in Case III-DS, the Low-secrecy
aperiodic task must be continuously invoked and monitored to measure its delay (caused
by the High-secrecy periodic task). Note that, in real-time systems, it is very rare that
an aperiodic task runs continuously and periodically since it is typically event-driven and
has soft or no real-time requirements.

Case II-DS (weakest covert timing channel) is used to illustrate a way to eliminate
a covert timing channel (Section 3.5) and calculate the security-performance tradeoffs
(Section 4).

3.5 Elimination of covert timing channel

To eliminate or reduce the impact of covert timing attacks, many different defensive
measures have been devised [12, 13, 14, 21, 34]. One popular defensive measure is to
distort the accuracy of a system clock to prevent a task from accessing an accurate time
source. Another is to schedule tasks in a round-robin fashion so that each task can
only run during an allocated time slot. However, these measures are not acceptable for
applications running on real-time systems. In real-time systems, tasks must have access
to an accurate time source and are executed according to scheduling algorithms to meet
their real-time constraints. Another common way to eliminate covert timing channels is
to add a service request (noise) in order to cause unwanted delays in the response time of
a Low-secrecy task. For real-time systems, an injection of noise into the system should
not result in violation of real-time requirements such as deadlines, utilization bounds, etc.
In this section, we demonstrate a way to remove covert timing channels for the weakest
(most insecure) scenario, II-DS.

In Case II-DS, covert timing channels exist since the execution time of the High-
secrecy aperiodic task TA

H varies from 0 to Cs (deferrable server capacity) units of time
over every server period Ts and this causes various amounts of delay to the Low-secrecy
periodic task TP

L . A security measure to remove a covert flow is to submit an aperiodic
task to a scheduler and run it until a server capacity Cap is fully consumed during each
server period Ts. This full aperiodic task execution (i.e., full server capacity consumption)

12

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

0 1043 12

activation

task

termination
task

201876 16149

T
A
H

TD

Ts = 10Ts = 10

Figure 4: Injection of noise (TD) to eliminate covert timing channels

causes a maximum preemption delay in the response time of the Low-secrecy task TP
L .

As a result, Low always observes the worst (maximum) response time. In order to fully
execute an aperiodic task (i.e, fully consume server capacity), a trusted aperiodic dummy
task TD with a scheduling priority higher than TP

L is dispatched and executed if there
is no TA

H to execute or TA
H runs less than Cs units of time. Once TD is dispatched, it

continues to execute until Cap is fully consumed (Cap = 0). The execution of TD can be
considered as noise injected into a covert communication channel to block any information
transmitted by High.

An example (Figure 4) is used to explain a method of preventing covert timing channels
for Case II-DS. The example assumes that a server s has the period Ts = 10 and the
worst computation time Cs = 4. At t = 0, the first server period begins and the server
capacity Cap is replenished to its full capacity Cs, (i.e., Cap = Cs = 4). Since there is
no TA

H to execute, TD is dispatched and executed until Cap is exhausted. At t = 4, as
Cap is fully depleted (Cap = 0), the execution of TD is completed. At t = 10, the second
server period begins and Cap is replenished to its full capacity (Cap = Cs = 4). The
server is about to execute TA

H (which arrives at t = 10 or after the first dummy task is
dispatched and is placed in an aperiodic job queue). At t = 12, the execution of TA

H is
completed and Cap is reduced to 2 units of time. Since 2 units of time are still available
in Cap, the second TD is dispatched and the server starts to execute it. At t = 14, the
execution of TD is terminated as Cap is fully diminished (Cap = 0). In the both periods,
the aperiodic task (either TA

H or TD) runs for 4 units of time during each server period.
This always adds the maximum amount of delay to TP

L and Low observes a (single) worst
response time for all requests it submits to a scheduler.

4 Security - performance tradeoffs

If the existence of a covert timing channel is identified, a quantitative analysis should be
carried out to know how dangerous a given covert channel is. Traditionally, Shannon’s
information theory [8, 37] is used to quantify the amount of information flow through
covert channels. In the following section, we provide an overview of Shannon’s information
theory.

13

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

4.1 Shannon’s information theory

Mathematically, one can view a channel as a probabilistic function that transforms a
sequence of input symbols, x ∈ X={x1, . . ., xk, . . ., xK , }, into a sequence of output
symbols, y ∈ Y ={y1, . . ., yj, . . ., yJ}. We assume that the number of inputs and outputs
of a channel are finite and the current output depends on only the current input. Such a
channel is called a discrete memoryless channel (DMC).

Because of noise in a communication system, this transformation is typically not a
one-to-one mapping from the set X of input symbols to the set Y of output symbols.
Instead, any particular input symbol xk ∈ X may have some probability p(yj | xk) of
being transformed to the output symbol yj ∈ Y . p(yj | xk) is called a (forward) transition
probability. Given a DMC, the probability distribution of the output set Y , denoted by
QY , can be calculated in matrix form as:

QY =







p(y1)
p(y2)

...
p(y

J
)







=







p(y1 | x1) . . . p(y1 | xK)
p(y2 | x1) . . .

...
...

...
p(y

J
| x1) . . . p(y

J
| x

K
)













p(x1)
p(x2)

...
p(x

K
)







(1)

Let QY |X be a matrix which has the transition probabilities of a noisy channel as its
entities and QX represent the probability distribution of the input set X. Then, Eq (1)
is abbreviated as:

QY = QY |XQX

According to Shannon’s information theory, the entropy H(X) is a measure of the
information per input symbol x ∈ X and is defined as: H(X) =

∑K
k=1 p(xk)log (1/p(xk)).

Similarly, the entropy H(Y) is defined as H(Y) =
∑J

j=1 p(yj)log (1/p(yj)). The conditional
entropy H(X | Y) and H(Y | X) are defined as:

H(X | Y) = −
K

∑

k=1

J
∑

j=1

p(yj)p(xi | yj) log p(xi | yj)

and

H(Y | X) = −
K

∑

k=1

J
∑

j=1

p(xi)p(yj | xi) log p(yj | xi)

The average amount of the information transmitted over a channel is defined in infor-
mation theory as the mutual information I(X; Y). For notational convenience, QY (j) and
QX(k) represent the jth and kth entries of the column vectors QY and QX . QY |X(j, k) or
Qj|k represents the entry that lies in the jth row and the kth column of the matrix QY |X .

I(X : Y) =
K

∑

k=1

J
∑

j=1

QX(k)Qj|k log
Qj|k

∑K
i=1 QX(i)Qj|k

= H(X) − H(X|Y)

= H(Y) − H(Y |X) (2)

14

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

For a fixed transition probability matrix QY |X , the mutual information I(X; Y) is a
function of the probability distribution QX of the set X of input symbols. The maxi-
mum mutual information achieved for a given transition probability matrix is the channel
capacity C:

C = max
QX

I(X; Y) (3)

Note that channel capacity (bits/symbol) is found by maximizing I(X; Y) with respect
to QX for a given transition probability matrix. We denote the QX which maximizes
I(X; Y) as Qmax

XH
. When a channel is noiseless, there exists a one-to-one mapping between

the input set X and the output set Y . The channel capacity (bits/symbol) of a noiseless
channel is log n, if |X| = |Y | = n. log n

D
(bits/sec) is also commonly used as a channel

capacity where D denotes the transmission time of a symbol.

4.2 Modeling covert timing channels

In this section, using Shannon’s information theory, we model the covert timing channel
identified in the II-DS (worst timing channel) case. A covert channel can be modeled as an
unintended communication path through which an information receiver (Low) observes or
receives a symbol transmitted by an information sender (High). In the case of II-DS, the
High-secrecy higher-priority aperiodic task TA

H can add various amounts of delay to the
Low-secrecy low-priority periodic task TP

L as an information sender. As an information
receiver, Low can observes various response times due to the delays introduced by High.

Let eH be a total amounts (units) of time for which TA
H runs to influence a response

time of TP
L during each period TL of TP

L . In addition, emax
H is denoted as the maximum

value of eH and, thus, 0 ≤ eH ≤ emax
H . eH is viewed as an input symbol to a covert

communication channel. The value emax
H is affected by the worst computation time CL of

TP
L . Figure 5 shows how emax

H (or the range of eH) is influenced by CL. In the example,
TA

H and TP
L are running under DS scheduling (Case II-DS) with the deferrable server

s with Ts = 5 and CL = 2. Figure 5(b) shows that the worst response time RL of TP
L

is influenced only by the full execution of the aperiodic task in the first server period
(RL = 3). Thus, emax

H = 2 or 0 ≤ eH ≤ 2. However, as shown in Figure 5(c), when
the length (CL = 5) of the task is long enough to carry over to the second server period,
the delay of TP

L is caused by the aperiodic task executions in the first and second period
(RL = 9). Thus, emax

H = 4 and 0 ≤ eH ≤ 4.
Since 0 ≤ eH ≤ emax

H , a set XH of input symbols to the covert channel is XH = {x1,
x2, . . . , xn} = {0, 1, 2, . . . , emax

H }, where xi represents eH being (i − 1) units of time
and n = emax

H + 1. A set YL of output symbols consists of different response times Low
can measure during its period TL, assuming that Low always submits a task with fixed
computation time to a scheduler to observe or detect a response time of its own task. As
long as the Low-secrecy task is schedulable, Low can observe n different response times,
namely, YL = {y1, y2, . . . , yn}. Note that yn is the worst response time RL of TP

L .
The covert timing channel identified in the II-DS case be viewed as a (noiseless)

channel which maps a sequence of input symbols, xi ∈ XH = {x1, x2, . . . , xn} = {0, 1, 2,
. . . ,emax

H }, directly into a sequence of corresponding output symbols, YL = {y1, y2, . . . , yn}.

15

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

0 1 2 3 4 5 6 7 1098

0 1 2 3 4 5 6 7 1098

0 1 2 3 4 5 6 7 1098

Task
activation

Task
termination

T
A
H

T
A
H

T
P
L

T
P
L

T
P
L

TL = 10

TL = 10

Ts = 5 Ts = 5
a) Aperiodic requests

b) Periodic task with CL = 1

c) Periodic task with CL = 5

Figure 5: The worst computation time CL influences emax
H

Through this covert timing channel, an input symbol xi ∈ XH can be transformed into
yi ∈ YL every TL units of time and |XH | = |YL| = n = emax

H + 1. Thus, the covert timing
channel capacity is C = log (emax

H + 1) (bits/symbol) or log(emax
H + 1)/TL (bits/sec).

4.3 Security-Performance tradeoff analysis

Many real-time systems must process both hard and soft real-time tasks [2, 33]. Their
primary goal is to guarantee Quality of Service (QoS) requirements of soft tasks with-
out jeopardizing strict schedulability requirements (no deadline miss) of hard tasks. The
consequence of missing deadlines of hard tasks could be catastrophic. In contrast, miss-

x1

x2

x3

xn

y1

y2

y3

yn

Figure 6: Injection of noise with probability ρ into covert timing channel

16

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

ing deadlines of soft tasks can be tolerated (e.g., missing deadlines of a few multimedia
video frames is merely annoying). The typical performance metrics for guaranteeing QoS
requirements are a job failure rate (miss rate), average response time, etc. The job fail-
ure rate2 or miss rate is the average percentage of missed deadlines. A key indicator
for the performance of real-time systems is CPU utilization. Maintaining CPU utiliza-
tion of a system under a bound is very important. In general, as CPU utilization of
a system reaches or exceeds a utilization bound, the job failure ratio starts to increase
dramatically [1]. Thus, an appropriate method should be applied to effectively control
the utilization under a bound condition, e.g. new incoming requests are admitted into
the system only if a utilization bound is not exceeded.

In addition to real-time requirements, real-time systems must satisfy security require-
ments to be usable in MLS environments. The security mechanism introduced in Sec-
tion 3.5 injects a dummy trusted task as noise into a covert communication channel to
block covert communication. The injection of noise induces extra CPU overhead, thereby
increasing CPU utilization. This increased CPU utilization may cause a sudden increase
in the job failure rate or rejection of newly arrived real-time tasks. Since the goals of time-
liness and security requirements are usually conflicting, there is a strong need to develop a
solution which will balance between the requirements for security and the resulting perfor-
mance [29, 36]. In addition, the solution must accompany a rigorous analytical framework
which allows one to quantitatively measure the performance-security tradeoffs.

Security and performance can be optimized by employing a technique that switches
back and forth between two modes of operations with a probability ρ: an insecure mode,
in which all tasks are scheduled and executed without security measures and a secure
mode, in which security measures are applied to eliminate covert timing channels. The
noisy communication channel shown in Figure 6 has a transition probability p(yn|xi) =
ρ. This means that noise is injected into the communication channel in such a way that
all the inputs are transformed into yn with probability ρ. We call ρ a noise factor. For
example, with ρ = 1, yn is the only output symbol that Low as an information receiver
can observe and thus the channel capacity becomes zero.

The remaining of the section is devoted to perform the trade-off analysis for the most
insecure case, II-DS case (see Section III-D). The security measure (injection of a dummy
task as noise in the II-DS case) introduced in Section 3.5 can be modeled as the following
noisy communication channel (Figure 6). All the notations used to model the (noiseless)
communication channel in Section 4.2 can be reused with the addition of p(yn|xi) = ρ, i
6= n: as a security measure, a trusted dummy task is injected as noise with probability
ρ, causing the maximum delay to the Low-secrecy task TP

L and, thus, the worst response
time yn of TP

L .

Channel capacity formulation

Let Qmax
XH

be the probability distribution of input set XH which maximizes the amount
of information flow R through the noisy channel shown in Figure 6. Since the noisy chan-
nel has p(yn|xi) = ρ, i 6= n, Qmax

XH
has the same input probability distribution for all input

2The job failure rates are also an important performance metric to hard tasks when statistical analysis
is used [3].

17

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

symbols except xn, i.e. p(x1) = p(x2) = . . . = p(xn−1) = α and p(xn) = 1 − (n − 1)α;
from this, the range of the input probability α can be evaluated as α ≤ 1

(n−1)
. The output

probability distributions are p(y1) = p(y2) = . . . = p(yn−1) = α(1 − ρ) and p(yn) = 1 −
(n − 1)(1 − p)α. To find the channel capacity, it is necessary to differentiate the mutual
information R with respect to α. However, R is not differentiable when α = 1

(n−1)
(R is

bounded by α= 1
(n−1)

and not continuous at α = 1
(n−1)

). Thus, we have two cases to con-

sider: when α < 1
(n−1)

(boundary condition I) and when α = 1
(n−1)

(boundary condition II).

Case I, when α < 1
(n−1)

(boundary condition I):

H(YL) and H(YL|XH) are computed as:

H(YL) = −(n − 1)(1 − p)α log(1 − ρ)α

− {1 − (n − 1)(1 − p)α} log{1 − (n − 1)(1 − p)α}

H(YL|XH) =

− (n − 1)(1 − ρ)α log(1 − ρ) − (n − 1)ρα log ρ

Then, we can compute the mutual information R1 as:

R1 = H(YL) − H(YL|XH)

= −(n − 1)(1 − ρ)α log α + (n − 1)ρα log ρ

− {1 − (n − 1)(1 − ρ)α} log {1 − (n − 1)(1 − ρ)α}

To determine the channel capacity C1, we differentiate R1 with respect to α (R1 is
differentiable when α < 1

(n−1)
). This gives:

dR1

dα
= −(n − 1)(1 − ρ) log α + (n − 1)ρ log ρ

+ (n − 1)(1 − ρ) log{1 − (n − 1)(1 − ρ)α}

The value α which satisfies dR1

dα
= 0 is denoted by α1. After a few algebraic steps, the

expression for α1 is found to be:

α1 =
1

(n − 1)(1 − ρ) + ρ
ρ

ρ−1

(4)

We substitute α1 of Eq(4) for α used in the expression R1 to obtain a formula for the
channel capacity C1. Thus, we can express Qmax

XH
and C1:

Qmax
XH

= {α1, α1, . . . , 1 − (n − 1)α1} (5)

18

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

0

10

20

30

40

50

60

70

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

C

ρn

Figure 7: Covert timing channel capacity C vs. noise factor ρ and number of symbols, n.

C1 = log[1 + (n − 1)(1 − ρ)ρ
ρ

1−ρ]

To find the ranges of n (a number of symbols) and ρ (noise factor) where the formula
C1 holds, α in the boundary condition I is replaced by α1:

α <
1

(n − 1)
(boundary condition I)

α1 <
1

(n − 1)
1

(n − 1)(1 − ρ) + ρ
ρ

ρ−1

<
1

(n − 1)

ρ
1

ρ−1 > n − 1 (6)

Thus, with the boundary condition of Eq(6), the precise formulation of the channel
capacity for the case 1 is:

C1 = log[1 + (n − 1)(1 − ρ)ρ
ρ

1−ρ] if ρ
1

ρ−1 > n − 1 (7)

19

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

Case II, when α = 1
(n−1)

(boundary condition II):

When α = 1
(n−1)

, the following conditions hold:

• p(x1) = p(x2) = . . . = p(xn−1) = α =
1

(n − 1)

• p(xn) = 0

• p(y1) = p(y2) = . . . = p(yn−1) = (1 − ρ)α =
1 − ρ

n − 1

• p(yn) = 1 − (n − 1)(1 − p)α = ρ

From the above conditions, H(YL) and H(YL|XH) can be evaluated as:

H(YL) = −(1 − ρ) log
1 − ρ

n − 1
− ρ log ρ

H(YL|XH) = −(1 − ρ) log (1 − ρ) − ρ log ρ

Using the H(YL) and H(YL|XH) calculated in the above step, the formula for the mutual
information R2 is:

R2 =H(YL) − H(YL|XH)

=(1 − ρ) log (n − 1)

Since R2 is not a function of α, the channel capacity C2 of the noisy channel is simply
R2. The channel capacity C2 and the input probability distribution Qmax

XH
for the case 2

are expressed as:

C2 = (1 − ρ) log (n − 1) (8)

Qmax
XH

= {α2, α2, . . . , 0}, where α2 =
1

(n − 1)
(9)

Based upon C1 of Eq(7) and C2 of Eq(8), the noisy covert channel capacity C is
formularized as:

C =















log[1 + (n − 1)(1 − ρ)ρ
ρ

1−ρ] if ρ
1

ρ−1 > n − 1

(1 − ρ) log (n − 1) otherwise.

Figure 7 shows how the channel capacity of the noisy covert channel changes as the
number of symbols n and the noise factor ρ vary. As shown in the figure, the channel
capacity C with n symbols decreases as the noise factor increases (more noise is injected
into the channel as a security measure).

Performance overhead formulation

A real-time system in the secure mode experiences some performance degradation if
noise (dummy task) is injected to reduce the covert channel capacity. The total execu-
tion time eN of the dummy task TD during the period TL of the Low-secrecy task is a

20

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

0

10

20

30

40

50

60

70

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

30

35

e
N

ρn

Figure 8: Average execution time eN v.s noise factor ρ and number of symbols, n.

performance overhead to the real-time system. In the noisy channel model, the transmis-
sion of xi means the High-secrecy task runs for i − 1 units of time and, as a result, the
dummy task is executed for emax

H − (i − 1) units (i.e., eN = emax
H − (i − 1)). Since the

execution time eN varies depending upon timed behaviors of the High-secrecy task, we
use an average execution time eN as the quantity of the performance loss. The formula
for eN is:

eN = ρ ·
n−1
∑

i=1

p(xi) · (emax
H − (i − 1)),

where xi ∈ XH , emax
H = n − 1

= ρ ·
n−1
∑

i=1

p(xi) · (n − i) (10)

To evaluate eN , the input probability distribution QXH
should be known beforehand.

Typically, it is expected that timed behaviors of High-secrecy aperiodic tasks follow a
set of well-known probability distributions such as exponential arrival rates and uniform
distribution for task execution times. However, we cannot assume that the High-secrecy
(malicious) task follows well-defined statistical distributions. Instead, an appropriate
assumption should be that High always tries to utilize the covert channel to maximize

its capacity. Thus, Qmax
XH

of Eq(5) and Eq(9) are used to evaluate eN . If ρ
1

ρ−1 > n − 1
(boundary condition I), p(xi) in Eq(10) is replaced by α1 of Eq(4). Otherwise, α2 = 1

(n−1)

is substituted for p(xi):

21

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

eN =















1
2

· ρ · α1 · (n − 1) · n if ρ
1

ρ−1 > n − 1

1
2

· ρ · n otherwise.

Figure 8 shows how eN varies as the noise factor ρ and the number of symbols n
change; the overhead eN gradually goes up (performance suffers) as ρ increases (more
noise is injected to the covert communication channel with n symbols).

5 Discussion & conclusion

In this paper, we address the covert timing channel issues in scheduling a set of hybrid
tasks for MLS real-time systems. Specifically, the timing vulnerabilities of three fixed-
priority scheduling algorithms such as Polling Server (PS), Deferrable Server (DS), and
Priority Exchange (PE) are identified and security measures for removing covert timing
channels are proposed. Since the goals of timeliness and security requirements of real-time
systems are usually conflicting, we show a way to build an analytical model which allows
one to quantitatively measure the performance-security tradeoffs and formally specify
both security and real-time requirements.

There are many different approaches that deal with scheduling a set of hybrid tasks
other than the fixed-priority scheduling algorithms on which we concentrate in this paper.
Another approach is to use a server to service aperiodic requests in a dynamic-priority
system where scheduling priorities of tasks running change over time [11, 30]. Other
approaches are based on the concept of slack stealing [24, 25] and the dual priority mech-
anism [9, 10]. In our future research, we plan to identify the timing vulnerabilities on each
scheduling approach (dynamic, slack-stealing and dual-priority mechanism) and build an
analytical model which allows developers to exercise performance-security tradeoffs. In
addition, we are going to investigate how our analysis method can be used in the area of
information flow control in the avionic domain [23].

References

[1] T. F. Abdelzaher and C. Lu. Schedulability analysis and utilization bounds for
highly scalable real-time services. In RTAS ’01: Proceedings of the Seventh Real-
Time Technology and Applications Symposium (RTAS ’01), page 15, Washington,
DC, USA, 2001. IEEE Computer Society.

[2] B. Al-Duwairi and G. Manimaran. Combined scheduling of hard and soft real-time
tasks in multiprocessor systems. In High Performance Computing, HiPC, pages 279–
289, 2003.

[3] A. Atlas and A. Bestavros. Statistical rate monotonic scheduling. In Proc. of the
19th IEEE Real-time Systems Symposium, pages 123–132, Dec. 1998.

22

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

[4] N.C. Audsly, A. Burns, M.F. Richardson, K. Tindell, and A.J. Wellings. Applying
New Scheduling Theory to Static Priority Pre-emptive Scheduling. Software Engi-
neering Journal, 8(5):284–292, 1993.

[5] D. E. Bell. Looking back at the bell-la padula model. In ACSAC ’05: Proceed-
ings of the 21st Annual Computer Security Applications Conference, pages 337–351,
Washington, DC, USA, 2005. IEEE Computer Society.

[6] G. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications. Kluwer Academic Publishers, 1997.

[7] S. Cabuk, C. Brodley, and C. Shields. IP Covert Timing Channels: Design and
Detection. In Proc. ACM conference on Computer and Communications Security,
2004.

[8] T. Cover and J. Thomas. Elements of Information Theory. Wiley-Interscience, 1991.

[9] R. Davis. Dual priority scheduling: A means of providing flexibility in hard real-time
systems. Tech. Rep YCS230, University of York, UK, 1994.

[10] R. Davis and A. Wellings. Dual priority scheduling. In RTSS ’95: Proceedings of the
16th IEEE Real-Time Systems Symposium (RTSS ’95), page 100, Washington, DC,
USA, 1995. IEEE Computer Society.

[11] T. M. Ghazalie and T. P. Baker. Aperiodic servers in a deadline scheduling environ-
ment. Real-Time Syst., 9(1):31–67, 1995.

[12] W. Hu. Reducing Timing Channels with Fuzzy Time. In IEEE Symposium on
Research in Security and Privacy, May 1991.

[13] J. Janeri, D. Darby, and D. Schnackenberg. Building Higher Resolution Synthetic
Clocks for Signaling in Covert Timing Channels. In The Eighth IEEE Computer
Security Foundations Workshop, 1995.

[14] M. H. Kang, I. Moskowitz, and S.Chincheck. The pump: A Decade of Covert Fun.
In 21st Annual Computer Security Applications Conference, 2005.

[15] J. P. Lehoczky, L. Sha, and Y. Ding. Rate-monotonic scheduling algorithm: Exact
characterization and average case behavior. In Proc. of the 11th IEEE Real-time
Systems Symposium, pages 166–171, Dec. 1989.

[16] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced aperiodic responsiveness in
hard real-time environments. In IEEE Real-Time Systems Symposium, pages 261–
270, 1987.

[17] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment. Journal of the ACM, 20(1), 1973.

[18] J. Liu. Real-Time Systems. Prentice Hall, 2000.

23

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

[19] H. Mantel and H. Sudbrock. Comparing Countermeasures against Interrupt-Related
Covert Channels in an Information-Theoretic Framework. In 20th IEEE Computer
Security Foudnations Workshop, pages 326–340, 2007.

[20] R. Meyden and C. Zhang. Information flow in systems with schedulers, part 1:
Definitions. Theoretical Computer Science, 467:68–88, 2013.

[21] I. Moskowitz and M. H. Kang. Covert Channels - Here to Stay. In Proc. COMPASS
94, pages 235–243, 1994.

[22] S. Mou, Z. Zhao, S. Jiang, Z. Wu, and J. Zhu. Feature extraction and classifica-
tion algorithm for detecting complex covert timing channel. Computers & Security,
31(1):70–82, February 2012.

[23] K. Müller, M. Paulitsch, S. Tverdyshev, and H. Blasum. Improving performance of
network covert timing channel through huffman coding. Mathematical and Computer
Modelling, 55(1-2):69–79, 2012.

[24] I. Ripoll, A. Crespo, and A. García-Fornes. An optimal algorithm for scheduling soft
aperiodic tasks in dynamic-priority preemptive systems. IEEE Trans. Softw. Eng.,
23(6):388–400, 1997.

[25] R. Sandra and J. P. Lehoczky. On-Line Scheduling of Hard Deadline Aperiodic Tasks
in Fixed-Priority Systems. In IEEE Real-Time Systems Symposium, pages 160–171,
1993.

[26] J. Son and J. Alves-Foss. Covert Timing Channel Analysis of Rate Monotonic Real-
Time Scheduling Algorithm in MLS Systems. In Proc. IEEE Workshop on Informa-
tion Assurance, pages 361–368, 2006.

[27] J. Son and J. Alves-Foss. Covert Timing Channel Capacity of Rate Monotonic
Scheduling Algorithm in MLS Systems. In The IASTED International Conference
on Communication, Network, and Information Security, 2006.

[28] J. Son and J. Alves-Foss. A Formal Framework for Real-Time Information Flow
Analysis. Computers & Security, 28(6):421–432, 2009.

[29] S. Son, R. Mukkamala, and R. David. Integrating security and real-time requirements
using covert channel capacity. IEEE Trans. Knowledge and Data Eng., 12(6):865–879,
2000.

[30] M. Spuri, G. Buttazzo, and F. Sensini. Robust aperiodic scheduling under dynamic
priority systems. In RTSS ’95: Proceedings of the 16th IEEE Real-Time Systems
Symposium (RTSS ’95), page 210, Washington, DC, USA, 1995. IEEE Computer
Society.

[31] P. A. Srihari, R. M. Venkatesan, and S. Bhattacharya. Opportunistic scheduling of
secure tasks in a multiprocessor environment. J. Integr. Des. Process Sci., 3(2):63–78,
1999.

24

Son and Alves-Foss / PRJBR Vol. 5, No. 1 Spring 2014, pp. 2-25

[32] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable server algorithm for
enhanced aperiodic responsiveness in hard real-time environments. IEEE Trans.
Comput., 44(1):73–91, 1995.

[33] P. Tan, H. Jin, and M. Zhang. A hybrid scheduling scheme for hard, soft and non-real-
time tasks. In ISORC ’06: Proceedings of the Ninth IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing (ISORC’06),
pages 20–26, Washington, DC, USA, 2006. IEEE Computer Society.

[34] J. Gray III. On introducing noise into the Bus-Contentiion Channel. In IEEE Sym-
posium on Research in Security and Privacy, 1993.

[35] M. Völp, C.J. Hamann, and H. Härtig. Avoiding timing channels in fixed-priority
schedulers. In Proceedings of the 2008 ACM symposium on Information, computer
and communications security, ASIACCS ’08, pages 44–55, 2008.

[36] R. Watson, W. Morrison, C. Vance, and B. Feldman. The TrustedBSD MAC Frame-
work: Extensible Kernel Access Control for FreeBSD 5.0. In USENIX Annual Tech-
nical Conference, FREENIX Track, pages 285–296, 2003.

[37] W. Weaver and C. E. Shannon. The Mathematical Theory of Communication. Uni-
versity of Illionois Press, 1963.

[38] J. Wu, Y. Wang, L. Ding, and X. Liao. Improving performance of network covert
timing channel through huffman coding. Mathematical and Computer Modelling,
55(1-2):69–79, 2012.

25

	Introduction
	Real-time scheduling algorithms
	Notations and assumptions
	Polling Server
	Deferrable Server
	Priority Exchange

	Covert timing channel analysis
	Our model & assumptions
	Identification of covert timing channels
	Exception to Lower-Secrecy First (LSF)
	Weakest covert timing channel
	Elimination of covert timing channel

	Security - performance tradeoffs
	Shannon's information theory
	Modeling covert timing channels
	Security-Performance tradeoff analysis

	Discussion & conclusion

